U.S. DEPARTMENT OF COMMERCE National Technical Information Service PB-292 310 # Goldstone Validation Survey - Phase! (U.S.) National Geodetic Survey, Rockville, MD **Nov 78** | NOAA FORM 25-13 (1-78) BIBLIOGRAF | PHIC DATA SHEET | NATIONAL OCI | EANIC AND ATMOSPHE | MENT OF COMMERCE | |--|--|------------------------------------|----------------------------------|-------------------------| | NOAA ACCESSION NUMBER | 2. | | 3. RECT IS C | SI N UTBE | | 4. TITLE AND SUBTITLE | | | S. REPORT | DAYE | | Goldstone Validation Surve | ey - Phase 1 | | Nov 1 | 978 | | | | | 6. | | | 7. AUTHOR(S) | | | 8. REPORT | NO. | | William E. Carter and James | - | | | -NOS-NGS-15 | | 9. PERFORMING ORGANIZATION NAME A NOAA, National Ocean Surve | | | 10. PROJEC | T/TASK NO. | | Rockville, MD 20852, | • | | 11. CONTRA | CT/GRANT NO. | | National Geodetic Survey | | | | | | 12. SPONSORING ORGANIZATION NAME A | ND ADDRESS | | 13. TYPE O | F REPORT AND PERIO | | Same | | | COVERE | | | | | | 14. | | | 18. PUBLICATION REFERENCE NOAA Technical Memorandum 3 append. 16. ABSTRACT | NOS NGS-15, Nove | ember 1978. 42 | p, 2 fig, 1 ta | b, 5 ref, | | purpose was to determine to in space system validation geodetic techniques were edescribed. Input and outplisted as appendices. (Automotive Control of the c | studies, with a
employed. The ob
out of the least- | n accuracy of ±
servational met | 1 cm. Three-d
hods of measure | imensional
ement are | | 17. KEY WORDS AND DOCUMENT ANALYS | is | | | | | 17A. DESCRIPTORS | | | | | | *Geodetic surveys, *Geodes | y, Measurement, | Oceanographic s | urveys | | | 178. IDENTIFIERS/OPEN-ENDED TERMS | | | | | | Baseline studies, HAVAGO o | computer program, | California | | | | | | | | | | 7C. COSATI FIELD/GROUP | | | | | | 8E, 8B | | | | | | 18. AVAILABILITY STATEMENT | | | 19. SECURITY CLASS | 21. NO. OF PAGES | | Released for distribution: | (,) | | (This report) UNCLASSIFIED | 47 | | | 5/1 /1 | } | 20. SECURITY CLASS | 22. PRICE | | | Same L. | TAIMA | (This report) UNCLASSIFIED | INF NO I | NOAA FORM 25-13 (1-78) SUPERSEDES ALL PREVIOUS EDITIONS. NOAA Technical Memorandum NOS NGS-15 ## Goldstone Validation Survey - Phase I William E. Carter James E. Pettey National Geodetic Survey Rockville, Md. 20852 November 1978 REPRODUCED BY NATIONAL TECHNICAL INFORMATION SERVICE U. S. DEPARTMENT OF COMMERCE SPRINGFIELD VA. 22161 U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Ocean Survey #### NOAA Technical Publications #### National Ocean Survey/National Geodetic Survey subseries The National Geodetic Survey (NGS) of the National Ocean Survey (NOS), NOAA, establishes and maintains the basic National horizontal and vertical networks of geodetic control and provides governmentwide leadership in the improvemment of geodetic surveying methods and instrumentation, coordinates operations to assure network development, and provides specifications and criteria for survey operations by Federal, State, and other agencies. NGS engages in research and development for the improvement of knowledge of the figure of the Earth and its gravity field, and has the responsibility to procure geodetic data from all sources, process these data, and make them generally available to users through a central data base. NOAA Technical Memorandums and some special NOAA publications are sold by the National Technical Information Service (NTIS) in paper copy and microfiche. Orders should be directed to NTIS, 5285 Port Royal Road, Springfield, VA 22161 (telephone: 703-557-4650). NTIS customer charge accounts are invited; some commercial charge accounts are accepted. When ordering, give the NTIS accession number (which begins with PB) shown in parentheses in the following citations. Paper copies of NOAA Technical Reports, which are of general interest to the public, are sold by the Superintendent of Documents, U.S. Government Printing Office (GPO), Washington, D.C. (telephone: 202-783-3238). For prompt service, please furnish the GPO stock number with your order. If a citation does not carry this number, then the publication is not sold by GPO. All NOAA Technical Reports may be purchased from NTIS in hard copy and microform. Prices for the same publication may vary between the two Government sales agents. Although both are nonprofit, GPO relies on some Federa' support whereas NTIS is self-gustained. An excellent reference source for Government publications if the National Depository Library program, a network of about 1,300 designated libraries. Requests for borrowing Depository Library material may be made through your local library. A free listing of libraries currently in this system is available from the Library Division, U.S. Government Printing Office, Arlington, VA 22304 (telephone: 703-557-9013). #### NOAA Geodetic publications Classification, Standards of Accuracy, and General Specifications of Geodetic Control Surveys. Federal Geodetic Control Committee, John O. Phillips (Chairman), Department of Commerce, NOAA, NOS, 1974 reprinted annually, 12 pp (PB265442). National specifications and tables show the closures required and tolerances permitted for first-, second-, and third-order geodetic control surveys. Specifications To Support Classification, Standards of Accuracy, and General Specifications of Geodetic Control Surveys. Federal Geodetic Control Committee, John O. Phillips (Chairman), Department of Commerce, NOAA, NOS, 1975, reprinted annually 30 pp (PB261037). This publication provides the rationale behind the original publication, "Classification, Standards of Accuracy, ..." cited above. #### NOAA Technical Memorandums, NOS/NGS subseries - NOS NGS-1 Use of climatological and meteorological data in the planning and execution of National Geodetic Survey field operations. Robert J. Leffler, December 1975, 30 pp (PB249677). Availability, pertinence, uses, and procedures for using climatological and meteorological data are discussed as applicable to NGS field operations. - NOS NGS-2 Final report on responses to geodetic data questionnaire. John F. Spencer, Jr., March 1976, 39 pp (PB254641). Responses (20%) to a geodetic data questionnaire, mailed to 36,000 U.S. land surveyors, are analyzed for projecting future geodetic data needs. - NOS NGS-3 Adjustment of geodetic field data using a sequential method. Marvin C. Whiting and Allen J. Pope, March 1976, 11 pp (PB253967). A sequential adjustment is adopted for use by NGS field parties. - NCS NGS-4 Reducing the profile of sparse symmetric matrices. Richard A. Snay, June 1976, 24 pp (PB-258476). An algorithm for improving the profile of a sparse symmetric matrix is introduced and tested against the widely used reverse Cuthill-McKee algorithm. - NOS NGS-5 National Geodetic Survey data: availability, explanation, and application. Joseph F. Dracup, June 1976, 45 pp (PB258475). The summary gives data and services available from from NGS, accuracy of surveys, and uses of specific data. (Continued at end of publication) . ## NOAA Technical Memorandum NOS NGS-15 ## Goldstone Validation Survey - Phase I William E. Carter James E. Pettey National Geodetic Survey Rockville, Md. 20852 November 1978 U.S. DEPARTMENT OF COMMERCE Juanita M. Kreps, Secretary **National Oceanic and Atmospheric Administration** Richard A. Frank, Administrator National Ocean Survey Allen L. Powell, Director #### CONTINTS | Abstract | |--| | Introduction | | Purpose of the survey | | Basic formulation | | Survey scheme | | NGS observational program | | JPL measurements 1 | | Conclusions 10 | | References 1 | | Appendix A. NGS supportive data | | Appendix B. JPL supportive data | | Appendix C. Input data for adjustment | | Appendix D. Output data for adjustment 2 | Mention of a commercial company or product does not constitute an endorsement by NOAA
National Ocean Survey. Use for publicity or advertising purposes of information from this publication concerning proprietary products or the tests of such products is not authorized. #### GOLDSTONE VALIDATION SURVEY - PHASE I William E. Carter James E. Pettey National Geodetic Survey National Ocean Survey, NOAA Rockville, MD 20852 ABSTRACT. Results are given for a special purpose study conducted by the National Geodetic Survey (NGS) of the National Ocean Survey (NOS) at the National Aeronautics and Space Administration/Jet Propulsion Laboratory (NASA/JPL) MARS Deep Space Station, located at the Goldstone Deep Space Communication Complex in California. The purpose was to determine the components of an approximately 330-m base line, used in space system validation studies, with an accuracy of ±1 cm. Three-dimensional geodetic techniques were employed. The observational methods of measurement are described. Input and output of the least-squares adjustment program, HAVACO, are listed as appendices. #### INTRODUCTION This report presents the results of a special purpose survey conducted in the immediate vicinity of the NASA MARS Deep Space Station (DSS 14). The MARS station is located at the Goldstone Deep Space Communication Complex, near Barstow, California. It is operated by the California Institute of Technology's Jet Propulsion Laboratory. William E. Carter served as NGS Project Manager and James E. Pettey served as Special Technical Advisor for the project. Field operations were under the direction of Richard Maxey, Chief of Geodetic Party G-48. The National Geodetic Survey, NOS, worked closely with JPL during the planning, site preparation, and field operation phases of the survey. Primary responsibility was assigned to NGS for developing a suitable survey scheme, taking the measurements, reducing the field data, and producing the final report. The Jet Propulsion Laboratory had primary responsibility for reviewing the survey scheme to ensure that it addressed all their needs, site preparation, and coordination between the survey activities and the operational activities at the MARS station. In addition, because of irresolvable scheduling conflicts, certain measurements of the telescope itself were accomplished by JPL personnel and provided to NGS for inclusion in the final computations. #### PURPOSE OF THE SURVEY The MARS 64-m antenna is regularly used for Very Long Baseline Interferometry (VLBI) observations. In an effort to compare a variety of space techniques, certain collocation experiments will be conducted at the MARS station. A special facility suitable for use by the NASA transportable laser-ranging and VLBI systems has been constructed near the MARS antenna. The primary purpose of the survey was to determine the components (ΔX , ΔY , ΔZ) of the vector base line from the VLBI point of reference at the MARS antenna (DSS-14) to a monumented point at the new "validation" facility. The goal was to achieve an accuracy of ± 1 cm in each component, in a coordinate system defined by the FK-4 Fundamental Star Catalog, the Conventional International Origin (CIO), and Bureau International de l'Heure time and pole position values. The survey also tied-in other points of interest in the area. (See Survey Scheme.) #### BASIC FORMULATION The components of a line connecting two stations on the Earth, expressed in a standpoint altitude-azimuth coordinate system, are $\Delta X_A = B \cos a \cos v$ $\Delta Y_{\Delta} = B \sin a \cos v$ $\Delta Z_{\Lambda} = B \sin v$ where B is the chord distance between the stations, a is the azimuth of line B, v is the altitude of line B, Subscript A indicates an altitude-azimuth reference frame. This local coordinate system is not a very desirable reference frame in which to express the base line components because the orientation is defined by the local vertical which varies over the surface of the Earth in a very complex manner. If the astronomic latitude and longitude of the standpoint (i.e., the direction of the local vertical with respect to the rotational axis of the Earth) are known, appropriate rotations can be made to express the base line components in an equatorial frame of reference. The components are then given by $\Delta X_{F} = B [\cos \lambda (\cos \phi \cos v - \sin \phi \cos a \cos v) - \sin \lambda \cos a \cos v]$ $\Delta Y_{E} = B \left[\sin \lambda \left(\cos \phi \sin v - \sin \phi \cos a \cos v \right) + \cos \lambda \sin a \cos v \right]$ $\Delta Z_{p} = B [\cos \phi \cos a \cos v + \sin \phi \sin v]$ where B, a, v are as previously defined, is the astronomic latitude, λ is the astronomic longitude, Subscript E indicates an equatorial reference frame. It is, of course, well known that the orientation of the physical body of the Earth with respect to the axis of rotation varies with time. This phenomenon is commonly referred to as polar motion. Polar motion causes the components of a line to be time dependent, and if multiple determinations of the components made at different epochs are to be compared, the observed values must be reduced to a common epoch. All astronomic latitudes, longitudes, and azimuths used in this survey were reduced to the Conventional International Origin using polar coordinates and time information published by the Bureau International de l'Heure. The concepts and equations which are briefly presented above form the basis for the methods often referred to as three-dimensional geodesy. Several books and papers have been prepared on the subject, e.g., Heiskanen and Moritz (1967), Bomford (1971), and Rapp (1975). The final adjustment of the survey was made by Pettey using computer program HAVAGO. HAVAGO, developed by T. Vincenty of NGS, combines horizontal, vertical, and astronomic observations in a least-squares adjustment according to the principles of three-dimensional geodesy. #### SURVEY SCHEME The VLBI reference point at the MARS antenna is taken to be the point where the vertical (azimuth) axis intersects the plane containing the horizontal (altitude) axis. There is no physical component at this point, but rather it is a point in space that can be located only with respect to some auxiliary monumented point. The VLBI reference point is located among the structural components of the telescope and could not be conveniently occupied for the purposes of surveying. Indeed, no point that could be conveniently occupied was found very near the desired point of measurement. It was decided to establish a temporary station, designated MARS COLLIMATION, near ground level and almost directly beneath the MARS VLBI reference points. (See fig. 1.) The Jet Propulsion Laboratory designed and installed a special observing platform and instrument support structure in the base structure of the master equatorial tower. From station MARS COLLIMATION, it was possible to look up to the master equatorial system and down to a brass station marker cemented to the floor of the support structure by use of a vertical collimator. of sight from MARS COLLIMATION to stations MARS CONTROL and GOLDSTONE VALIDATION were created by JPL by boring 20-cm diameter holes at appropriate locations in the master equatorial support structure. Both MARS CONTROL and GOLDSTONE VALIDATION were located so that the lines of sight passed through existing doorways in the main telescope pedestal. The primary reason for establishing station MARS CONTROL was to provide redundancy in the determination of the base line components. Since it was not possible to observe astronomic latitude, longitude, and azimuth from MARS COLLIMATION, it was not possible to solve for the base line components from independent determinations from each end of the line. However, the addition of MARS CONTROL allowed a comparison between the direct measurement of the GOLDSTONE VALIDATION-MARS COLLIMATION vector with the sum of the GOLDSTONE VALIDATION-MARS CONTROL and MARS CONTROL-MARS COLLIMATION vectors. Figure 2 is a sketch of the total survey scheme. For brevity in the discussions to follow, stations will be identified by the following numeric codes: | Station Name | Identification No. | |---------------------------|--------------------| | MARS 1963 | [100] | | ARIES 1976 | [101] | | GOLDSTONE VALIDATION | [102] | | MARS CONTROL | [103] | | MARS COLLIMATION | [104] | | MARS VLBI | [105] | | GOLDSTONE VALIDATION RM 1 | [201] | | GOLDSTONE VALIDATION RM 2 | [202] | | GOLDSTONE VALIDATION RM 2 | [203] | Figure 1.--Sketch taken from JPL visitor pamphlet, modified to indicate the location of temporary station MARS COLLIMATION [104], the VLBI reference point [105], and the brass marker at the base of the master equatorial support structure. Figure 2.--Survey scheme. 17. * #### NGS OBSERVATIONAL PROGRAM To ensure that the desired accuracy of ±1 cm was achieved in each component of the vector base line [102]-[105], both redundancy and multiplicity of measurements were employed. Instruments of several different types and manufacturers minimized systematic instrumentation errors. Measurements were made by more than one observer to reduce personal biases. The observing periods were also scheduled to minimize the effects of time-dependent atmospheric anomalies. Complete listings of all the measurements used in the adjustment are given in appendix C. #### Astronomic Observations Astronomic positions were determined explicitly for stations [100], [102], and [103] using FK-4 stars exclusively. Astronomic positions for the remaining stations were considered implicitly determined based on their close proximity to one of these three stations; i.e., to obtain the desired astronomic quantities for those stations not actually observed, geodetic positional differences were applied to the astronomic values of the nearby station. Historically, NGS has used the Horrebow-Talcott method in the determination of latitude. This features the meridianal measurement of the small zenith distance
difference of two stars culminating on opposite sides of the local zenith within a few minutes. The tight constraints on zenith distance differences and time between transits of the stars forming a pair require that a catalog containing a large number of stars be used. The SAO catalog, which contains 258,997 stars, has been used for this purpose since 1968. Even though this catalog is referred to the FK-4 system, it cannot be considered as definitively FK-4. To avoid placing qualifications on the reference system for the astronomic latitudes the Sterneck method was adopted, for which acceptable observing lists can be developed using only the 1,500 plus FK-4 stars. The Sterneck method requires the measurement of absolute tenith distances. To minimize the influence of systematic refraction errors on the latitude results, a program involving an equal number of stars north and south of the zenith was specified. As an additional constraint, the mean declination of all stars scheduled for a nightly observation program was required to be not more than ±1° from the station's assumed latitude. Latitude determinations for stations [100], [102], and [103] were obtained by two observers with both a Kern DKM-3A and Wild T-4 theodolite observing the same stars simultaneously. The resulting latitudes for stations [100] and [103] involved single night determinations, while observations for station [102] spanned two nights. Appendix A contains a list of the astronomic latitude determinations. Longitude determinations were made by the meridian transit method (Hoskinson & Duerksen 1947) using the Wild T-4 theodolite and Datametrics model SP-300 digital timing system. The following tabulation gives the number of longitude sets obtained at each station during the course of this project. | Station | No. of Sets | |---------|-------------| | [100] | 3 | | [102] | 8 | | [103] | 6 | Each longitude set includes observations on seven stars. For station [100], there were an additional six sets observed in 1964. After careful analysis, all nine sets were combined to obtain the adopted station longitude. A summary of all the astronomic lengitude determinations is presented in appendix A. Astronomic azimuths were observed from stations [100], [102], and [103]. For the few lines not directly included in the azimuth observation program, azimuth orientations were obtained through angular transfer using horizontal angles measured independently from the azimuth observations. In the azimuth observation program with the DKM-3A theodolite, special observing techniques were used to minimize personal biases. Three observers, each observing 10 positions, were used in each nightly azimuth determination. After each 10 positions, the theodolite was rotated 120° on the supporting tribrach to remove possible theodolite eccentricities. Theodolite focussing draw tube errors were minimized by installing a circular defraction grating over the telescope objective lens. A summary of the astronomic azimuth determinations is included in appendix A. #### Electromagnetic Distance Measu_ements Four instruments (two MA 100 Tellurometers, one model IV Ranger, and one model 3800 Hewlett-Packard) were used in the Electromagnetic Distance Measurements (EDM) among stations [100], [101], [102], [103], and [104]. Standard point-to-point ranging techniques were used in all measurements with the MA 100 and model 3800 instruments. For the model IV Ranger measurements, a multiple path technique was used which employed a flat first-surface mirror in conjunction with a retroreflector. This allowed range measurements to be made to all stations from a single instrument setup at station [103]. To illustrate the method, consider the lines [103]-[104] and [104]-[102]. The EDM instrument was positioned over station [103]. The mirror, gimbaled for azimuth and altitude adjustments, was positioned over station [104], and a retroreflector was positioned over station [102]. Measurements were first made to station [104] by direct ranging to the mirror. The mirror was then reoriented to achieve retroreflection from station [102] and then the total distance of [103]-[104]-[102] was measured. The distance [104]-[102] was obtained by the simple process of subtracting the distance [103]-[104] from the overall distance [103]-[104]-[102]. Assuming that corrections for any instrument and retroreflector offsets are properly applied, the distance obtained by this differencing process is inherently free of instrumental constants. The lines [101]-[100], [101]-[102], and [102]-[100] were measured in a similar manner. Meteorological measurements to determine the atmospheric index of refraction were taken at 15-minute intervals throughout the EDM observing periods. These measurements were made at each terminal using precise altimeters and asperated thermometers located at instrument/reflector heights. Periodic frequency measurements for each EDM instrument oscillator were taken to minimize systematic scale errors. #### Additional Observations As an additional verification of the EDM instrument measurements, two lines, [103] to [104] and [101] to [102], were measured with standardized tapes. Four invar and two steel tapes certified by the National Bureau of Standards were used in these base line measurements. Standard base line procedures were employed as detailed in the "Manual of Geodetic Triangulation" (Gossett 1971). Reciprocal zenith distances were measured at stations [100], [101], [102], [103], and [104]. For stations [100], [102], and [103], these measurements were made in conjunction with the astronomic azimuth observations. To minimize systematic errors resulting from short term refraction anomalies, the vertical measurements were observed nightly in two sets separated by approximately two hours. As an independent check on the zenith distance measurements, first-order spirit level observations were obtained for all ground stations. ¹This fixture was fabricated at the NGS Instrument and Equipment Branch, Corbin, Va., in such a manner that the geometric center of the mirror's front surface is coincident with the mechanical intersection of the axes. The vertical distance from station [104] to station [105] was measured with two standardized steel tapes. The tapes were tensioned at 5 kg. Station [104] (MARS COLLIMATION) was found to be slightly eccentric to the vertical axis of the telescope. A sketch showing the direction and magnitude of the offset is included in appendix A. #### JPL MEASUREMENTS Due to conflicting schedules, it was not possible for NGS to survey directly to the MARS VLBI reference point. During the survey NGS, working with JPL personnel, did relate the survey to a reference mark on the master equatorial assembly. Jet Propulsion Laboratory subsequently measured the height of the elevation axis above this reference mark and the eccentricity of the horizontal axis relative to the vertical axis of the telescope. Appendix B contains a copy of JPL correspondence relative to these measurements. Note that the eccentricity which is quite small actually assumes no importance to this survey, since the VLBI reference point is defined to be on the vertical axis. #### CONCLUSIONS The goals of the survey were achieved and, in fact, substantially exceeded. The components of the vectors between station GOLDSTONE VALIDATION [102] and the other stations of the survey scheme are listed in table 1. | | Table 1.~-Bas | e line components | |---------|---------------|-------------------| | From To | ΔX ±σx | ΔΥ ±σγ | | From | То | ΔΧ ±σχ | ΔΥ ±σγ | Δ Ζ ±σ z | |-------|-------|----------------|--------------------|------------------------| | [102] | [100] | -166.165 ±.001 | 301.130 ±.002 | 306.849 ±.002 | | [102] | [101] | - 2.320 ±.001 | 20.675 ±.001 | 26.552 ±.001 | | [102] | [103] | -258.792 ±.001 | 199.452 ±.001 | 86.406 ±.001 | | [102] | [104] | ~214.919 ±.001 | 211.848 ±.001 | 134.133 ±.001 | | [102] | [165] | -227.005 ±.001 | 188.002 ±.002 | 153.150 ±.002 | | [102] | [201] | 56.294 ±.001 | $-13.693 \pm .001$ | 19.561 ±.001 | | [102] | [202] | - 21.765 ±.001 | - 25.429 ±.001 | - 51.028 ±.001 | | [102] | [203] | - 33.991 ±.001 | 40.046 ±.001 | 30.886 ±.001 | AX, AY, AZ are components of vectors between the indicated stations in meters. σx , σy , σz are the formal standard errors. Notice that the formal standard error of each component of the GOLDSTONE VALIDATION-MARS VLBI base line [102]-[105] is ± 0.002 m. Even allowing for reasonable unknown systematic errors, the components should be accurate to ± 0.005 m. The entire output of program HAVAGO is reproduced in appendix D. #### REFERENC' S - Bomford, G., 1971: Geodesy. Clarencion Press, Oxford, third edition, 731 pp. - Gossett, F. R., 1971: Manual of geodetic triangulation. Special Publication No. 247, U.S. Coast and Geodetic Survey (now National Ocean Survey, NOAA), Dept. of Comm., Washington, D.C., 344 pp. (NTIS accession no. 5)M-71-50406). - Heiskanen, W. A. and Moritz, H., 1967: Physical Geodesy, Freeman and Co., San Francisco and London, 364 pp. - Hoskinson, A. J. and Duerksen, J. A., 1947: Manual of geodetic astronomy, <u>Special Publication</u> No. 237, U.S. Coast and Geodetic Survey (now National Ocean Survey, NOAA), Dept. of Comm., Washington, D.C., 205 pp. (NTIS accession no. PB267465). - Rapp, R. H., 1975: Geometric Geodesy Notes, Vol. II. Ohio State University, Columbus, pp. 111-134. Figure 3.--Theodolite locations used for latitude observations. 1979 Figure 4.--Eccentricity of MARS COLLIMATION [104] from the vertical axis of the Mars telescope. (All measurements are by direct measure.) Æσ. Table 2.--Astronomic latitude results | _Station | Date | Instrument | | Φ (C | (IO) | Ador | pted 4 | |----------|---------------|------------|-----|------|-------|------|--------| | | - | | - 0 | 1 | H | 9. | 1 | | [100] | 10/11/77 | DKM-3A | 35 | 25 | 35.59 | 35 | 25 | | | 10/11/77 | Wild
T-4 | | | 35.31 | 35 | 5"45 | | [102] | 10/06/77 | DKM-3A | 35 | 25 | 24.41 | | | | | 10/06/77 | Wild T-4 | | | 24.22 | | | | | 10/07/77 | DKM-3A | | | 24.29 | 35 | 25 | | | 10/07/77 | Wild T-4 | | | 23.91 | 24 | 1.21 | | [103] | 10/12/77 | DKM-3A | 35 | 25 | 27.34 | 35 | 25 | | | • | Wild T-4 | | | 27.39 | 27 | 7:36 | Table 3.--Astronomic longitude results | Station | GCD | Observer | Λ | (epo | ch) | V (CIO) | Adopted Λ | |---------|----------|----------|------|------|-------|---------|-------------------| | [100] | 3/05/64 | VB | 116 | 53 | 25.94 | 24.24 | | | (200) | 3/05/64 | FB | | - | 26.32 | 24.63 | | | | 3/05/64 | EH | | | 27.22 | 25.53 | | | | 3/10/64 | EH | | | 27.26 | 25.49 | | | | 3/10/64 | EH | | | 26.88 | 25.11 | | | | 3/10/64 | FB | | | 26.02 | 24.25 | | | | 10/12/77 | RM | | | 27.03 | 25.37 | | | | 10/12/77 | BK | | | 26.14 | 24.48 | 116° 53' | | | 10/12/77 | BK | | | 26.55 | 24.88 | 24"89 ±0"17 | | [102] | 10/06/77 | RM | 116 | 53 | 15.28 | 13.89 | | | | 10/08/77 | BK | | | 15.39 | 13.90 | | | | 10/10/77 | RM | | | 15.42 | 13.85 | | | | 10/10/77 | RM | | | 15.52 | 13.96 | | | | 10/10/77 | RM | | | 15.21 | 13.64 | | | | 10/10/77 | BK | | | 14.94 | 13.37 | | | | 10/10/77 | BK | | | 15.15 | 13.58 | 116° 53' | | | 10/10/77 | BK | | | 15.02 | 13.44 | 13"70 ±0"08 | | [103] | 10/13/77 | вк | 1.16 | 53 | 28.41 | 26.70 | | | | 10/13/77 | RM | | | 28.54 | 26.83 | | | | 10/13/77 | RM | | | 28.10 | 26.38 | | | | 10/14/77 | RM | | | 28.54 | 26.79 | | | | 10/14/77 | BK | | | 27.96 | 26.20 | 116° 53' | | | 10/14/77 | BK | | | 28.60 | 26.85 | 26"62 ±0"11 | #### APPENDIX B. JPL SUPPORTIVE DATA 30 June 1978 Dr. William E. Carter National Geodetic Survey U. S. Department of Commerce National Ocean Survey Rockville, Maryland 20852 Dear Bill: Attached is a sketch showing the values for measurements JPL agreed to perform at DSS-14. These values relating the ME to the elevation and azimuth axes should enable you to complete Phase I and issue the DSS-14 short baseline final report. The weather at Goldstone during the measurements was not cooperative - it is a very windy year. The accuracy of the elevation axis offset is probably + 0.020 inches. I will be anducting the elevation axis measurements again in the future to try and improve on the accuracy. I think the values are adequate for the completion of the report and the up-coming meeting with Mr. R. Stevens. (unrelated text removed) Sincerely, Kenneth P. Bartos, Supervisor Antenna Mechanical Group KPB:em 377 ELEV AXIS IS 8.953" ABOVE MIRROR COVER SURFACE USED BY NGS AS REFERENCE SURFACE. (MIRROR POINTING TO NADIR.) Figure 5.--Telescope elevation axis offset. ### APPENDIX C.--INPUT DATA FOR ADJUSTMENT The following computerized listing, using program HAVAGO, gives the input observational data for the Goldstone validation survey. | STATION DATA | 1TA |---|-----------------|--------------------------------|-----|-----|----------|----------------|----------|----------|-------------|-----|-------|--------------|--------------------------|---------------|---------|--------------------|-------|-----------|---| | STATION | 6EC | GEOD. LAT. | | 9 | 00 | EOD. LON. | HEIGHT | ¥ | ASTR. LAT. | .T. | AS | ASTR. LON. | | S. E. (GEOD.) | BEOD.) | S.E. (ASTR.) CODES | STR.) | 00 | Š | | MARS 1968
100 | 10
10 | 35 25 39,81830 | | 116 | 33.1 | 53 19,02710 | 995,374 | 10 | 35 25 35 45 | | 116 5 | 116 53 24.89 | | 0.001 0.001 | 1 0.001 | 6 | • | 0.4 1 1 1 | | | ARIES 1976
101 | | 35 25 29,09709 | | 116 | #î: | 6,20769 | 448.446 | 80
80 | 35 25 25,24 | | 116 5 | 116 53 14.15 | 0.0 | 0.0 | 0 | 0 | • | 0 %*0 | • | | GOLDSTONE VALIDATION
102 35 25 2 | VALIDA1 | .IDATION
35 25 28.06609 | | 911 | 80
80 | 53 7,75552 | 973,124 | ID
10 | 35 25 24,21 | | 116 5 | 116 53 13,70 | 0.0 | 0.0 | 0 | 0.3 | * | 0 0 0 | 0 | | MMRS CONTROL
103 | | 35 25 31,49676 | | 116 | 10 | 53 20,47860 | 973,624 | 10 | 35 25 27,36 | | 116 5 | 116 53 26,62 | 0.0 | 0.0 | 0 | 0.3 | * | 9 **0 | 0 | | MARS COLLIMATION | IMATION
35 2 | 10N
35 25 33,33962 | | 116 | 33 1 | 33 19,14992 | 976,107 | NO
NO | 35 25 29,20 | | 116 5 | 116 53 25,29 | 0.0 | 0.0 | 0 | ř. | • | 0 0 0 **0 | 0 | | MARS VLB:
105 | | 35 25 33,33947 | | 116 | 10
10 | 53 19,14965 | 1038,315 | 10
10 | 35 25 29,20 | 20 | 116 5 | 116 53 25,29 | 0.0 | 0.0 | 0 | 0 | • | 0 7 * 0 | 0 | | GOLDSTONE VALIDATION RM 1
201 35 25 28.854 | VALIDA1 | IDATION RM 1
35 25 28.83473 | 73 | 116 | 5 | 5,52011 | 973,569 | 10 | 35 25 24,96 | 96 | 116 5 | 116 53 11,46 | 0.0 | 0.0 | 0.0 | 0.3 | • | 0.4.0 | ٥ | | GOLDSTONE VALIDATION RM 2
202 35 25.10757 | VALIDAT | TION RM
25 26.10 | | 116 | 10
10 | 8.06915 | 970.051 | 10
10 | 35 25 22,25 | 8 | 116 5 | 116 53 14,01 | 0.0 | 0.0 | 0.0 | 6.0 | * | 0 0 0 **0 | 0 | | 601 DSTONE VALIDATION RM 3
203 55 29,26785 | VALIDA: | TION RM | 785 | 116 | 80
80 | 116 53 9,67519 | 844°446 | 10 | 35 25 25.41 | | 116 5 | 3 15.6 | 116 53 15.62 0.0 0.0 0.0 | 0 | 0 | ю.
0 | | 0.00 | 0 | INPUT | | SEC. | • | | • | • | • | . ~ | • | 0.7 | • | • | | | | | • | | | | • | • | | | • | • | |---|---|-----|----------|----------|-----|-----------|-----------|-----|-----------|-----------|-----|----------|-----------|-----|-----------|----------|-----|----------|-------|-----------|---------|-----|----------|--------|---| | | Ŧ | • | • | • | • | • | • | ۰ | 0 | ٠. | | | • | ٠ | • | | • | • • | _ | • | | | | | • | | | OBSERVED | 0.0 | 7 0 16,7 | 6 45 44. | 0.0 | 3 38 13,6 | 1 58 37.0 | 0.0 | 3 38 13,1 | 1 58 36,2 | 0 0 | 1 15 6,3 | 3 38 13 1 | 0.0 | 5 18 28,9 | 0 5 35,8 | 0.0 | 1 4 28,4 | 0.0 0 | 2 25 16,2 | 0 5 36. | 0 0 | 9 7 45,9 | 9 3 23 | | | | LIST | -1 | | 1 23 | | | • | | 5 | 2 | | | ю | | | 1 10 | | 1 | | | 2 10 | | | 4 13 | | | | 9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | Ó | 0 | 0 | 0 | Ö | 0 | 0 | 0 | Õ | 0 | 0 | 0 | 0 | | | 1 | 1 C C C C C C C C C C C C C C C C C C C | 0 | 0 | 0 | 0 | 0 | 0 | Ó | 102 | 0 | 0 | O | 0 | 0 | Ó | 0 | Ö | Õ | 0 | 0 | 0 | 0 | 0 | Ö | | | | | - | ~ | m | # | so. | ø | ^ | • | | 10 | INPUT ASTRONOMIC AZIMUTHS | SEC. | ស្សស់សស្សស់សស្សស្សស្សស្សស្សស្សស្សស្សស្សស | ٠ | |----------------|--|---------| | ī | | ٠ | | BCERVED | | 13 13,0 | | Ö | चित्रक चित्रक चित्रक विश्व के कि | Ď | | £ | | 5 | | FROM | | 9 | | | これに くちゅうりょう こうこうりょう こうこうこう こうこうこうこう こうこうこう ちょうしょう ちょうしょう おかか ちょうこう こうかい いっぱい いっぱい いっぱい いんりょう こうしょう にんりょう こうしょう にんりょう こうしょう にゅうしょう にんりょう にんりょう にんりょう にんしょう にんしょう にんしょう にんしょう にんしょう しょうしょう しょうしゅう しょうしょう しょう | | 20 | ROUPED | | VERTICAL | ANGLES | | | | | | | | | | |--------|-------|----------|------------|----|----------|-------|------|-----|-------|----------|-----|---| | | FROM | 2 | LIST | 8 | OBSERVED | VED | SEC. | Σ | н•1. | <u>.</u> | ¥ | ¥ | | S. | 100 | 0 | - | 92 | 35 | 6 | | | 1.723 | • | _ | 0 | | S | 100 | 0 | 1-4 | 4 | 9 | 1,1 | | | | • | • | 0 | | 26 | 100 | 0 | ~ | 92 | K) | 9.9 | | | | | ٠ | 0 | | 57 | 100 | 0 | N | 35 | 13 | 8.0 | | | | • | | 0 | | 80 | 100 | 0 | H 7 | 8 | 5 | 5.2 | | | | | | 0 | | 89 | 100 | 0 | Ю | 8 | <u>ق</u> | | | | | | | 0 | | 90 | 100 | _ | m | 46 | 9 | | | | | • | | 0 | | 61 | 101 | 0 | | 89 | 50 | | | | | • | • | 0 | | 62 | 101 | 0 | - | 8 | 30 | .4 | | | | • | • | 0 | | 63 | 102 | 0 | -1 | 9 | t
t | | | | | • | | 0 | | ÷ | 102 | 0 | - | 90 | - | ۳. | | | | • | • | 0 | | 63 | 102 | 0 | ~ | 87 | t
t | * | | | | • | | 0 | | 99 | 102 | 0 | N | 9 | - | .5 | | | | | | 0 | | 67 | 102 | 0 | ю | 8 | ませ | °. | | | | | • | 0 | | 9 | 102 | 0 | ₽ O | 90 | - | ı. | | | | | | 0 | | 69 | 102 | 0 | t | 87 | # | 8 | • | | | • | • | 0 | | 70 | 102 | 0 | 3 | 90 | -1 | 9 | | | 3.548 | | • | 0 | | Z | 102 | ~ | # | 90 | ĸ | 2.6 | | | | • | | 0 | | 72 | 103 | 0 | - | 86 | 0 | 0 | • | • | | • | | 0 | | 73 | 103 | 0 | - | 90 | Ю | 1.8 | • | • | | • | • | 0 | | ż | 103 | 0 | Q | 99 | 0 | 2 | • | • | | • | | 0 | | 75 | 103 | 0 | ~ | 9 | σ | 6. | • | | | • | | ဂ | | 76 | 103 | 0 | ~ | 90 | m | ຄ | • | • | | • | • | 0 | | 77 | 103 | 0 | ю | 96 | 0 | 9.5 | • | | | • | • | 0 | | 78 | 103 | 0 | ı | 6 | σ | 9.0 | • | | 149 | | | 0 | | 79 | 103 | 0 | ĸ | 9 | Ю | 1.6 | • | | • | • | | 0 | | 80 | 103 | c | ŧ | 86 | - | ۲. | • | • | • | • | | 0 | | 91 | 10 CM | 0 | # | 30 | M | ٦. | | • | • | • | | 0 | | 82 | 103 | 0 | ŧ | 90 | 27 | 'n. | • | | • | • | | 0 | | 83 | 104 | 102 | - | 8 | 59 | 47.91 | 0 | 6,1 | 0.275 | 3,287 | 0.0 | 0 | | 84 | 104 | o | - | 89 | 40 | ۲. | • | • | - | • | • | 0 | | | | | | | | | | | | | | | A | н
Н | | ja
P | 7 | 00 | 30 | 660 | | 0 | 96 | 30 | .0 | | 2 | .30 | 3 | 96 | | 2 | | 68 | Ċ | 3 | - | | | | 8 | .97 | 33 | 2 | 4 | ? : | ֓֞֝֜֜֜֝֜֜֝֓֜֜֝֓֓֓֜֜֝֜֜֜֓֓֓֓֓֓֜֜֜֜֓֓֓֓֓֓֓֡֓֜֜֜֜֓֡֓֓֜֜֜֜֡֓֡֓֡֓ | ņ | 53 | .78 | 7 7. | . 78 | 3 | | | • | | \$ | 3 | • 62 | 32 | .69 | | 1 | | • | • | 7 | 4.9 | . 18 | .19 | 19 | • | • | |----------|---|---------|------|---------|--------|--------|------|--|---------|---------|--------|-------|--|--------|---------|--------|---------|------|---------|---------|----------|---------|------|------|--------|---------|---------|---------|---------|-------|--------|------|--|---------|---------|---------
---------|---------|----------|--|------|-------|--------|---------|---------|--------|---------|---------|--------|------|------------------|------|-------|--------|------------|---------|--------|--------|--------|-----| | H. I. | | 255 | | , | 25 | 6.5 | | ֡֜֝֜֜֜֜֜֜֝֜֜֜֜֜֜֓֓֓֜֜֜֜֜֜֜֜֓֓֓֓֜֜֜֜֜֜֜֜֜ | • 65 | .65 | | | ֓֞֜֜֜֓֓֓֓֓֓֓֓֓֓֓֓֜֟֜֓֓֓֓֓֓֓֓֓֓֡֓֓֓֓֓֓֡֓֜֓֡֓֡֓֡ | 25 | .65 | 65 | 4 | 3 4 | 6 | .63 | • | 79. | 4 | - | | • | ž | 9,48 | -04 | 6 | ċ | • | | ¥. | * 48 | .13 | .78 | .13 | 7. | | | • | 7 | v. | 13 | 8 | :13 | .13 | • | - | ``` | • | | | 9 | 65 | 65 | .65 | | | | MM PP4 | | .5 | | | .5 | 0.0 | | 0.5 | .5 2.0 | 5.0 | .5 | | 2 | .5 2.0 | .5 2.0 | 0.0 | | | 0.4 | 0.0 | .0 7.0 | 0 7 0 | - | | | 0.4 | 0.7 0. | 0.7.0 | 0 7 0 | | | | 0.7 | .0 7.0 | .0 7.0 | 0.0 | 0.2 | 0.0 | 0 | | | • | 200 | 0.0 | 0.2 | 0.0 | 0.00 | 0.0 | .0 2.0 | | | | | | 0.0
0.0 | | , v | 3.0 | 0.7 | | | OBSERVED | , | 59.7082 | 0000 | 3600 OT | 5,9581 | 9×49 | 7006 | 55,7419 | 37,9663 | 30,2310 | 2295 | 71.00 | 0,707 | 5,7569 | 60.8301 | 7.9657 | 40 0440 | 1001 | 30.6255 | 33,/198 | 29.0271 | 60,8421 | 7401 | 7.60 | 101.00 | 33./186 | 37.7640 | 37,9671 | 65,9580 | 40108 | 1 94.7 | 7010 | 0.00.00 | 60.0377 | 30,2259 | 18,3154 | 33.7092 | 18.3:79 | 20 036.2 | 10 10 10 10 10 10 10 10 10 10 10 10 10 1 | 2000 | | 200 | 30.6386 | 37,9733 | 0,6479 | 65,9625 | 18,5171 | 7.9716 | 7041 | 44.00%
64.00% | 74.5 | 70.00 | | 7.4134 | 1,2151 | 1.2974 | 0.9580 | 1,2095 | | | FROM TO | | 103 10 | ** | | 103 10 | 102 10 | | 707 | 102 10 | 102 10 | 102 10 | , K | | 103 10 | 102 10 | 102 10 | 200 | 100 | 105 10 | 102 10 | 100 10 | 100 10 | 100 | | 4 6 | 207 | 102 10 | 102 10 | 103 10 | 103 | | | 201 | 102 10 | 102 10 | 103 10 | 101 10 | 103 10 | 101 | | 200 | 7 1 7 | 01 001 | 10401 | 103 10 | 102 10 | 103 10 | 103 10 | 103 10 | | 101 201 | | 100 | ny Tat | 161 20 | 102 201 | 102 20 | 102 20 | 102 | 101 | ō | 0 | • | Ċ | Š | 5 | C | ō | 0 | C | Ċ | • | ٠, | ٠, | rŧ | ~ | H | - | - | • | • | ٠, | • (| v | N | N | N | Ø. | N | 0 | 127 | • | | v | n | m | m | × | 1 | • | INPUT ABSOLUTE DISTANCES •• | ABSOLUTE DISTANCES | | | | | | |--------------------|----------|---|------|---------|------| | FROM TO | ORSERVED | I | X dd | H. H. | Ħ. | | 135 102 202 | 61.2801 | 9 | 3.0 | U. t.79 | 0.00 | | | DIFFERENCES | |-------|-------------| | INPUT | ELEVATION | | • | 20 | 02 | 20 | 20 | 20 | 01 | 01 | 0,1 | |----------|------|--------|------|----|------|------|----|-----| | S.E | 0 | 0 | ٠. | ٥. | ٠. | ۰. | ٥. | ٥. | | OBSERVED | 9.02 | -1,220 | 2.98 | 8 | 0.50 | 1,32 | 'n | .07 | | 10 | 0 | 102 | 0 | 0 | 0 | C | 0 | 0 | | FROM | 0 | 101 | 0 | 0 | 0 | 0 | C | 0 | | | 10 | 138 | m | 4 | 3 | 4 | 4 | * | # POSITION DIFFERENCES (METERS) | HEIGHT S.E. | 32,8080 0,0020 | |-------------|----------------| | S.E. | 0.0001 | | LON. | 6400.0- | | S.E. | 0,0001 | | LAT. | -0.0008 | | 2 | 105 | | FROM | 104 | | _ | 145 | A PRICRI STANDARD ERRORS (Unless overriden by input on observation card) INPUT | | | 11.1.00
0.00
0.00
0.00
0.00
0.00
0.00
0 | | |---|---------------|---|--| | 2 | M OF | 444488 | | | | VECTOR SUM OF | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | A PAILON STANDAND ENGINE TOTAL OF THE BILLING OF THE STANDAND | | DIRECTIONS
AZIMUTHS
RECIPROLAL VERTICAL ANGLES
GROUPED VERTICAL ANGLES
ABSOLUTE DISTANCES
RELATIVE DISTANCES | | #### APPENDIX D. -- OUTPUT DATA FOR ADJUSTMENT The following computerized listing, using program HAVAGO, shows the output of the three-dimensional adjustment. NATIONAL GEODETIC SURVEY, ROCKVILLE, MD JOB STATISTICS 1/F = 294,9786982 A = 6378206.400 ELLIPSOID: CLARKE 1866 GOLDSTONE VALIDATION PROJECT (PHASE I) STANCARD ERROR OF UNIT WEIGHT # 1.12. VARIANCE # 1.25, 102 DEGREES OF FREEDOM. 7.50 NUMBER OF ... ITERATIONS STATIONS UNKNOWNS LISTS OF DIRECTIONS REFRACTION UNKNOWNS ORSERVATIONS ORSERVATIONS ORSERVATIONS ASTR. AZIMUTHS RECIP. VERT. ANGLES RECIP. VERT. ANGLES RELATIVE DISTANCES RELATIVE DISTANCES RELATIVE DISTANCES LAT., LON., HEIGHT DIFF. PLANE DISTANCES LAT., LON., HEIGHT DIFF. PLANE DISTANCES CONSTR., GEOD. LATITUDES LOGITUDES CONST DK/DH ASSUMED AS -0,010/1000 IF K VALUES NOT INPUT. SELECTED OPTIONS: | ç | |------------| | ROCKVILLF. | | SURVEY. | | ပ္ | | GEODF | | NATIONAL | | ADJUSTED DATA: STATIONS | | | | | | | | |--|----------------------------------|---------|--------|----------|---------|----------|-------| | STATION | LATITUDE | SIGMA | LONG | ONGITUDE | SIGMA | HEIGHT | SIGMA | | TARS 1963 | | 40000*0 | | 19.02710 | 40000 | 993.374 | 100.0 | | 101 ARIES 1976
102 GOLDSTONF VALTDATION | 35 25 29.09752
35 25 28.06849 | 0.00000 | 116 53 | 7.75552 | 0.0000 | 973.130 | 0.00 | | MARS CONTROL | | 0.00000 | | 20.47885 | 0,00005 | 973,624 | 0.003 | | MARS COLLIMATION | | 0.00005 | | 19,15014 | 0,00005 | 976,111 | 0,003 | | MARS VLBI | | 0,00005 | | 19,14995 | 0,00005 | 1008.919 | 1.004 | | GOLDSTONE VALIDATION RM 1 | | 9000000 | | 5,52008 | 0.00007 | 973.676 | 0,003 | | GOLDSTONE VALIDATION RM 2 | | 0.00007 | | 8,06917 | 0.00007 | 970.055 | 0.003 | | COLDSTONE VALIDATION RM 3 | | 90000*0 | | 9,67489 | 0.00007 | 974.453 | 0.003 | 21.40 28.38 35.48 34,80 5,24 13,54 21,53 26 26 11 13 11 13 28 51 136 13 51 32 7 32 13 288 299 321 119 288 307 67 187 322 288 321 340 103 108 318,310 429,029 33,733 337.965 460.919 33.733 337.965 460.919 33.733 337.965 330.244 460.919 259.833 318.310 337.965 330,244 0.0 14.08 37.12 0.0 17.27 45.43 0.0 6.98 14.08 30.45 30,38 5 8 8 5 5 8 8 5 38 0 8 2 0 KV KV 3.88 5.88 **t** 0 0.39 0.57 0.21 0.42 0.55 0.11 0.38 1.53 0.01 1.37 ð NATIONAL GEODETIC SURVEY, ROCKVILLE. 0.0 28.49 6.0 13.19 36.29 0.0 28.31 35.84 0.0 16.21 38.84 0.0 6.31 13.14 580 95 100 333 AUJUSTED DATA: DIRECTIONS 100 100 103 101 102 102 102 102 102 102 102 103 103 103 103 102 5.20 9.55 £ 6 89 00 80 CO 60 NATIONAL GEODETIC SURVEY, ROCKVÎLLF, MD ADJUSTED DATA; ASTRONOMIC AZIMUTHS | • | 36,62 | 36,62 | 36.62 | 36,62 | 9.42 | 9.42 | 9.42 | 9.42 | 32,92 | 32,92 | 32,92 | 32,92 | 5,20 | 5,20 | 5.20 | 5.29 | 0.77 | 0,77 | 0.77 | 0.17 | 35,34 | 35.34 | 35,34 | 35,34 | 19.74 | 10,72 | 10.72 | 10,72 | 10,72 | |-----------------|---------|---------|---------|------------|---------|---------|---------|---------|---------|-----------|----------|---------|---------|---------|---------|---------|---------|---------|-----------|-----------|---------|---------|---------|------------|------------|---------|---------|---------|----------| | V • A • | 32 | | | | | | | | | | | | | 53 | | | | | 50
101 | | | 38 | 38 | | 25 | | | | ĸ | | | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 | ţ | ą
S | Š | 94 | 87 | 87 | 87 | 87 | 69 | 83 | 83 | 69 | 85 | 8 | 8 | 8 | 83 | 90 | 90 | 90 | 90 | | DIST. | 429,029 | 429,029 | 429,029 | 429,029 | 460,919 | 460,919 | 460,919 | 460,919 | 259,833 | 259,833 | 259,833 | 259,833 | 460,919 | 460,919 | 460.919 | 460,919 | 337,965 | 337,965 | 337,965 | 337,965 | 259.833 | 259,633 | 259,833 | 259,633 | 318,310 | 337,965 | 337,965 | 337,965 | 337,965 | | ADJUSTED | | | | | | | | | | 35,99 | 35,99 | | | 33,48 | | | 21,40 | | | | | 34.80 | 54.80 | 34,80 | | | 13,54 | 13,54 | 13,54 | | D.C | | | | | | | 21 | | | ~ | _ | | | 51 | | | 13 | | 13 | | | _ | ^ | ~ | | 13 | H | 13 | 13 | | ₹ | 140 | 140 | 740 | 140 | 141 | 141 | 141 | 141 | 188 | 188 | 188 | 188 | 321 | 321 | 321 | 321 | 288 | 288 | 288 | 288 | • | æ | • | €0 | 103 | 108 | 108 | 108 | 108 | | > | 1,95 | 0.38 | 94.0 | -1.03 | 0.54 | -0.20 | 0.36 | -1.38 | -0°34 | -0.30 | -0.15 | -1.29 | -2,53 | -3.29 | -1.06 | 0.83 | 64.0- | -0.63 | 2,18 | 0.28 | 1.79 | 0.93 | 2.18 | 0.80 | -0.06 | -0.26 | -0.29 | 0.38 | 0.30 | | > | 2,95 | 0.57 | 0.69 | -1.57 | 0.81 | -0.31 | 0.54 | -2.10 | -0.52 |
-0.46 | -0.23 | -2.00 | -3.84 | 66.4- | -1.60 | 1,26 | -0.66 | -0.96 | 3.33 | 0.43 | 2.78 | 1.45 | 3,39 | 1,25 | .0.10 | 0+0- | 1100 | 0.59 | 94.0 | | OBSERVED | 20.80 | 23,18 | 23.06 | 25,32 | 28.05 | 29,17 | 28.32 | 30.96 | 36.51 | 36.45 | 36,22 | 37.99 | 39.32 | 40.47 | 37.08 | 34,22 | 22.06 | 22,36 | 18.07 | 20.97 | 32.02 | 33,35 | 31,41 | 33.55 | 5.34 | 13.94 | 13.98 | 12,95 | 13,08 | | SER | 26 | 56 | 26 | 5 6 | 5 | 5 | 21 | 5 | ٢ | ~ | - | ^ | 21 | 5 | 5 | ដូ | 13 | 13 | 13 | £ | ۲ | ^ | ^ | ^ | 5 6 | 13 | 13 | 13 | 13 | | 90 | 140 | 140 | 140 | 140 | 141 | 141 | 141 | 141 | 188 | 188 | 166 | 188 | 321 | 321 | 321 | 321 | 288 | 288 | 288 | 288 | œ | • | 60 | 60 | 103 | 108 | 108 | 108 | 108 | | 40 | 101 | 101 | 101 | 101 | 105 | 102 | 102 | 102 | 103 | 103 | 103 | 103 | 100 | 100 | 100 | 100 | 103 | 103 | 103 | 103 | 100 | 100 | 100 | 100 | 101 | 102 | 102 | 102 | 102 | | FROM | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 102 | 102 | 102 | 102 | 102 | 102 | 102 | 102 | 103 | 103 | 103 | 103 | 103 | 103 | 103 | 103 | 103 | | - | 25 | 56 | 27 | 28 | 53 | 9 | 31 | 32 | 10 | at
IFO | 15
15 | 36 | 37 | 38 | 39 | 9 | # | 42 | 中 | \$ | er) | 9 | 4.7 | 1 0 | 6 | 30 | 51 | 25 | ED
ED | 140 283 320 321 288 321 288 321 321 288 299 108 140 141 188 429,029 429.029 460.919 259.835 313,310 460,919 337,965 460,919 460,919 337,965 460.919 337.965 330.244 259,833 337,965 259,833 318,310 337,965 259,833 318,310 337,965 259,833 337,965 66,003 533,244 50.88 36.79 5.20 5,20 88 5 32 32 32 31 21 8.5 5.5 72 53 29 29 29 29 38 52 5 52 SB 38 31 87 87 90 87 89 89 888 0.41 0.15 0.04 0.09 0.57 2.04 0.78 2.02 0.76 3.02 0.20 13.22 -0.85 -0.41 1.61 1.68 0.13 1.40 66.63 16.16 16.16 30.97 NATIONAL GEODETIC SURVEY. ROCKVILLE, MD ADJUSTED DATA: GROUPED VERTICAL ANGLES 26,93 31,18 30.24 2.12 38,21 8,46 57.56 1.82 57.86 56.44 9.17 27 2 4 **8** 50 53 28 92 92 94 87 101 101 101 103 100 100 100 103 100 100 101 100 100 103 103 001 201 105 55 92 103 103 103 103 104 61 62 63 65 68 69 70 71 7.2 35.46 51 13 51 56 90 51 35,48 51 13 35,4821,40 200 13 136 34,80 7 9 2 1 3 3 30 NATIONAL GEODETIC SURVEY, ROCKVILLE, MD ADJUSTED DATA: ABSOLUTE DISTANCES | | _ | 'n | | м | 'n | | | | | | | | | | ä | | å | ě | ď | | å | | ċ | ĸ | ě | | ່ທີ | • | ä | • | ď | ÷ | • | 'n | ř | • | ď | ċ | ທີ | m | ď. | ċ | 'n | 'n | ้ | • | 6 | 21,80 | N. | ċ | ä | |-----------|---|------------|------|------|------|----------|------|-----|-----|------|------|------|------|-----|------|------|------|------|-----|----------|--------|-----|-----|------|------|------|------|------|------|------|-----|---------|------|------|------|------|----------|-------------|------|------|------|--------------|-------|------|------|------|------|---------|-----------|--|-----| | > | • | 38 | 52 | 20 | 53 | 53 | S | \$ | \$3 | 30 | 50 | 29 | 5 | 53 | 23 | 55 | 32 | 31 | 5 | 50
50 | S
S | S) | S | 20 | 25 | S | 53 | 53 | 53 | 25 | # | 25 | 27 | ည | 3 | 20 | 3 | S. | 53 | 20 | 35 | n) | 38 | 20 | # | 5 | Š | 53 | 13 | 3
10 | 23 | | | | 8 0 | 89 | 87 | 87 | 87 | 89 | 83 | E 3 | 87 | 87 | 87 | 83 | 83 | 89 | 87 | 92 | 95 | \$ | 81 | 87 | 89 | 9 | 87 | æ | 90 | 87 | 84 | 83 | 83 | 9 | 6 | 84 | 84 | 9 | 84 | 2 | 6 | 6 | 87 | 6 | 6 | 8 | 87 | 9 | 90 | 69 | 83 | 8 | 88 | 9 | | | | | • | | | • | | • | • | • | • | | | • | • | | • | • | • | • | • | • | • | | • | | • | • | | • | • | ٠ | • | • | • | • | • | • | ٠ | • | • | • | • | • | • | • | • | .30 | • | • | • | | | | ĸ | | ĸ | m | n | N | N | N | S. | 80 | m | N | N | N | K) | N | (V | М | ₩) | S) | N | N | S) | | -4 | Ю | 77 | N | | n | | N | S) | N | S. | N | - | r) | S) | | ~ | n | S | S. | m | S | 4.5 | Ю | | ŧ | | . 24 | į | | N | M | ທ | - | - | N | N | Ю | М | n | - | N | ď | - | N | R) | | - | - | - | - | M | N | 4 | ĸ | ß | Ŋ | N | 4 | N | N | ĸ | N | K) | Q | -4 | n | m | W. | - | | m | -4 | # | | 16 | N | N | - | | | | • | 103 | 30 | 321 | 340 | 288 | 299 | 299 | 30 | 30 | N | 40 | 6 | 9 | 3 | * | 141 | Ø | # | * | ø | 80 | ю | 0 | 0 | 321 | œ | 9 | 0 | 9 | 0 | C) | 30 | 119 | M | | 108 | S | 30 | 103 | 108 | €0 | 30 | 160 | 96 | 278 | 67 | 187 | 307 | 19 | | ApullSTED | | 833 | .310 | .003 | .919 | .732 | .964 | 244 | 244 | .003 | .003 | .919 | .964 | 244 | .244 | ,732 | .029 | .919 | 833 | .732 | .732 | 96# | 964 | .003 | .310 | .964 | .919 | .919 | ,244 | .310 | 732 | .310 | .029 | .003 | .244 | .003 | .244 | * 96 | .919 | .003 | .310 | . 96# | . 833 | .003 | .732 | .305 | .377 | 61,1486 | •026 | 934 | 148 | | 2 | • | 'n | æ | 0 | ٩. | ۲. | ٠, | ٦, | ۲. | ٣, | ۲. | ٠. | .5 | ٦. | ۶.9 | ຕ | | ĸ, | 'n | 9.5 | ۲. | ٦, | | ď | 1.0 | r, | ິດ | 0, | ۴. | ٥. | ۲. | S | 2.7 | 0.3 | 1.6 | ĸ | 1.¢ | 1.7 | 7. | 1.0 | 1.3 | 7.3 | 0.8 | 0.1 | ۰. | n | ٦. | 74.0 | ٦, | ٩ | 'n | | Z > | • | 0 | 0 | 0 | 0 | 0 | 0 | • | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | • | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ٠,
د | 0 | _ | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0007 | 0 | 0 | ۰ | | OBSERVED | 3 | 59. | | 9 | 0 | m | | ė | ö | Ġ | Ġ | 60, | 37. | ċ | 30. | 'n | 53 | ċ | 59. | 'n | 33. | ŗ. | 37. | 66, | 18. | 37. | ς. | 60 | 30. | 18. | 33. | å | 29. | 66. | ċ | 66. | ã
30. | ŗ. | 60. | , 99 | å | 37. | 59. | • | 'n | 6 | ۲. | 61,1479 | Ļ. | ď | ÷ | | 70 TO | - | 100 | 101 | 104 | 100 | 101 | 103 | 104 | 101 | 104 | 104 | 100 | 103 | 104 | 104 | 101 | 101 | 102 | 103 | 101 | 101 | 103 | 103 | 104 | 101 | 102 | 100 | 100 | 104 | 101 | 102 | 101 | 100 | 104 | 102 | 104 | 102 | 102 | 100 | 104 | 101 | 102 | 100 | 104 | 102 | 201 | 203 | 201 | 202 | 203 | 201 | | | | 0 | • | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | C | 0 | 0 | 0 | 0 | 102 | 0 | 0 | 0 | | 121.00004 | • | 85 | 98 | 87 | 88 | 89 | 06 | 91 | 95 | 93 | 9 | 95 | 96 | 57 | 96 | 99 | 100 | 101 | 102 | 103 | # O # | 105 | 106 | 107 | 100 | 109 | 110 | 111 | 112 | 113 | 714 | 113 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 90
10
10
10
10
10
10
10
10
10
10
10
10
10 | 134 | NATIONAL GEODETIC SURVEY, ROCKVILLE, MD | Q | | |---|----------------| | MAILONAL SECOELIC SCHUET, NOCHVILLE, MD | DISTANCES | | AC SUNVE | ABSOLUTE | | SECOL | DATA: | | 14.1014 | ADJUSTED DATA: | | ×. | 92 53 12,64
88 45 20,34 | |----------|-----------------------------| | AZ. | 187 27 34.37
307 21 7,56 | | ADJUSTED | 61,0261
60,9349 | | > 2 | -0.41 | | > | -0.0021 | | OBSFRVED | 61,0281 | | 2 | 202 | | FROM | 102 | | _ | 135
136 | | NATIONAL | GEODETI | C SURVEY | GEODETIC SURVEY, ROCKVILLE, MD | ₽ . | | | |--------------------------------|-------------|----------|--------------------------------|------------|-------|-------------| | ADJUSTED ELEVATION DIFFERENCES | ELEVATI | ON DIFFE | RENCES | | | | | | FROM | 10 | MEASURED | > | > 2 | ADJUSTED | | 137 | 100 | 101 | -19.0262 | 0.0007 | 96.0 | -19,0255 | | 138 | 101 | 102 | .1.219R | 0.0014 | 0.70 | 1.2184 | | 139 | 102 | 104 | 2,9821 | 0.0025 | 1.23 | 2,9846 | | 140 | 104 | 103 | -2.4834 | -0.0016 | -0.82 | 0 0 0 0 0 0 | | 14.1 | 103 | 102 | -0.5009 | 0.0012 | 0.60 | 266#*U= | | 145 | ا
د
د | 203 | 1,3236 | 00000 | 00.0 | 1.3036 | | 143 | 102 | 201 | 0.5452 | 0000 | 00.0 | 0.5450 | | 144 | 102 | 202 | -3.0732 | 000000 | 00.0 | -3.0732 | | | | | | | | | | | 2 | ADJUSTED FUSEILON DIFFFRENCES IMETERS | IMETERS | | | | | |---|---------|---------------------------------------|---------|---------|-----------------|--------------|-----| | I | FROM TO | LAT. | > | . NO 1 | > | I | > | | | 105 | 145 104 105 -0.0008 -0.0000 | 0000-7- | 6400.0- | 0000.0- 6400.0- | 32.8080 -0.0 | -0- | NATIONAL GEODETIC SURVEY, ROCKVILLE, MD AOJUSTED ASTRONOMIC LATITUDES AND LANGITUDES | SIGMA | 0.33 | ਲ છ •
0 •
0 • | 0.33 | 0.33 | 0°33 | 0 0
0 0
0 0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0.33 | |----------|-------------------------------------|-------------------------------------|--|-------------------------------------|--------------------------------------|-------------------------------------|--|--|---| | ADJUSTED | 35 25 35.47
116 53 24.84 | 35 25 25,24
116 53 14,20 | 35 25 24.19
116 53 13,40 | 35 25 27.38
116 53 26.97 | 35 25 29.17
116 53 25.23 | 35 25 29.20
116 53 25,29 | 35 25 24.98
116 53 11.46 | 35 25 22,24
116 53 14,01 | 35 25 25.41
116 53 15.62 | | >
2 | 0.08 | 0.00 | 90.0- | 0.06 | -0.09 | 00.00 | 00.0 | 00.00 | 000 | | > | 0.02 | 00.00 | 0 · 0 · 0 · 0 · 0 · 0 · 0 · 0 · 0 · 0 · | 0.02 | -0.03 | 00.0 | 00.0 | 000 | 00.00 | | OBSERVED | LAT 35 25 35,45
LON 116 53 24,89 | LAT 35 25 25,24
LON 116 53 14,15 | LAT 35 25 24,21
LON 116 53 13,70 | LAT 35 25 27,36
LON 116 53 26,62 | LAT 35 25 29.20
LON 116 53 25.29 | LAT 55 25 29.20
LON 116 53 25,29 | LAT 35 25 24,98
LON 116 53 11,46 | LAT 35 25 22,25
LON 116 53 :4,01 | LAT 35 25 25,41
LON 116 53 15,62 | | | MARS 1963
Mars 1963 | ARIES 1976
ARIES 1976 | GOLDSTONE VALIDATION
GOLDSTONE VALIDATION | MARS CONTROL
M/AS CONTROL | MARS COLLIMATION
Mars Collimation | MARS VLBI
MARS VLBI | GOLDSTONE VALIDATION RM 1
GOLDSTONE VALIDATION RM 1 | GOLDSTONE VALIDATION RM 2
GOLDSTONE VALIDATION RM 2 | GOLDSTONE VALIDATION RM x GOLDSTONE VALIDATION RM x | | STATION | 146 100
147 100 | 148 101
149 101 | 150 102
151 102 | 152 103
153 103 | 154 104
155 104 | 156 105
157 105 | 158 201
159 201 | 160 202
161 202 | 162 203
163 203 | WE | | | | | TRANSFORMED COURDI | |
---|--------------------------------|-----------|-----|--------------------|---| | | | | | 7 | 3677023.872
3676713.876
3676717.023
3676803.429
3676811.136
367673.423
367665.996
367665.996 | | | | A SCALE | 0.0 | > | ************************************** | | | | PSI OMEGA | 0.0 | × | -2000000000000000000000000000000000000 | | VILLE, MD | | EPSILON | 0.0 | | | | URVEY. ROCK | COORDINATES | 20 | 0.0 | | ALIDA: 10N
L
ATION
ALIDATION R
ALIDATION R | | NATIONAL GEODETIC SURVEY, ROCKVILLE, MD | ADJUSTED CARTESIAN COORDINATES | ρ | 0.0 | | MARS 1963 ARIES 1976 GOLDSTONE VALIDA; ION MARS COLLIMATION MARS VLBI GOLDSTONE VALIDATION RM 1 GOLDSTONE VALIDATION RM 3 | | NATIONAL | ADJUSTED | × | 0.0 | STATION | 9884886000000000000000000000000000000000 | MATIONAL GEGOETIC SURVEY, POCKVILLF, MD MISCELLANEOUS DATA FOR SELECTED LINFS, PART 1 | AZDISTB.AZ.
(GEODETIC) | 321 31 38.42
, J.#03
141 51 31.88 | 340 12 1.55
33.705
160 12 1.29 | 288 13 24.63
537.913
108 13 17.25 | 299 28 31.54
330.181
119 28 24.94 | 299 26 32.61
330-176
119 28 26.01 | 67 16 48.64
61.137
247 16 49.94 | 167 27 37.46
60.939
7 27 37.28 | 307 21 10.64
60.911
127 21 9.53 | |-------------------------------------|---|---|---|---|---|---|---|---------------------------------------| | AZ.,DIST.,V.A. | 321 51 35.46
460.919
67 29 5.20 | 340 11 58,52
33,733
87 55 46,85 | 286 13 21.40
337.965
89 55 0.77 | 294 28 28,38
330,244
89 29 1,30 | 299 28 30.01
332.161
83 48 59.77 | 67 16 45.30
61.149
69 29 21.80 | 167 27 54,37
61,026
92 53 12,64 | 307 21 7.56
60.933
68 45 20.84 | | 20 + 10 + 10 Z | .166.165
301.130
306.849 | 20.42C
20.67S
26.982 | .258.792
199.452
86.406 | 214,919 | 188,000
188,180 | 55.294
19.894
19.861 | -21.765
-25.429
-51.026 | 345.04
40.04
30.08 | | CORRELATION COEFF.
DX DY DZ | 0.69 -0.53
1.00 -0.70
-0.70 1.00 | 0.84 -0.82
1.00 -0.74
-0.74 1.00 | 0.61 -0.46
1.00 -0.64
-0.64 1.00 | 0.56 -0.26
1.00 -0.63
-0.63 1.00 | 0.77 -0.61
1.00 -0.84
-0.84 1.00 | 0.05 0.22
0.03 0.03 | 0.11 0.22
1.00 0.30
0.30 1.00 | 0.01 -0.03
1.00 0.20
0.20 1.00 | | | 1.00
0.00
0.00
0.00 | 0.00 | 100 | 0.00 | 1.00 | 400 | 0.10 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | STANDARD
ERRCIIS | 0.000 | 000000000000000000000000000000000000000 | 0.001 | 0.001 | 0.000 | 0000 | 0.001 | 0.000 | | | X Z Z | × ~ ~ ~ | 2 A A | X A C | 299
299 | 868
868 | 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 200 | | COEFF. | 10.00 | 0.01 | 840.4
840.4 | 1.00 | 0.00 | 000 | 0.00 | 0000 | | DIST | 1.00 | 1.00 | 1.00 | 10.00 | 0.01
0.00
0.00 | 100
0.03
0.03 | 0.00
1.00
0.11 | 0.21
1.00
0.03 | | CORMFLATION COEFF
A7. DIST. V.A. | 0.19 | 0000 | 0000 | 000 | 000 | 0 | 0.00 | 00.00 | | STANDARD
ERRORS | AZ. 0.42
DIST. 0.001
V.A. 1.10 | AZ. 1.93
DIST. 0.001
V.A. 11.61 | AZ. 0.44
DIST. 0.001
V.A. 1.02 | 0.57
0.001
1.06 | 0.001 | 4.04
7.91 | 4.19
0.002
3.84 | AZ. 4.00
DIST. 0.001
V.A. 3.77 | | V) | AZ.
DIST. | AZ.
DIST. | AZ.
DIST. | AZ.
DIST. | AZ.
DIST. | AZ.
DIST.
V.A. | AZ.
DIST.
V.A. | AZ.
DIST.
V.A. | | 2 | 100 | 101 | E 0 1 | 104 | 105 | 201 | 202 | 203 | | F R O 4 | 102 | 102 | 102 | 102 | 102 | 102 | 102 | 102 | NATIONAL GEODETIC SURVEY, ROCKVILLF, MD MISCELLANEOUS DATA FOR SELECTED LINES, PART 2 | | IGMA | 000000000000000000000000000000000000000 | |-----------------------|----------|---| | STANDPOINT | s na | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | SIGMA | 000000000000000000000000000000000000000 | | SYSTEM, ORIGIN AT THE | 96 | 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | TORIZON S | SIGMA | 000000000000000000000000000000000000000 | | I | N
O | 365
110311
11621
1622
1632
1632
1633
1633
1633 | | I Y S T E M | DISTANCE | # # # # # # # # # # # # # # # # # # # | | ORIALS | AZIMUTH | 11 | | ERUAT | ALTITUDE | 41 44 10 83
11 55 10 83
14 46 46 79
23 57 50 56
16 58 12 50
16 58 12 60
17 27 27 61 | | | 9 | 20000000000000000000000000000000000000 | | | FROM | 102222222222222222222222222222222222222 | - NOS NGS-6 Determination of North American Datum 1983 coordinates of map corners. T. Vincenty, October 1976, 8 pp (PB262442). Predictions of changes in coordinates of map corners are detailed. - NOS NGS-7 Recent elevation change in Southern California. S.R. Holdahl, February 1977, 19 pp (PB265-940). Velocities of elevation change were determined from Southern Calif. leveling data for 1906-62 and 1959-76 epochs. - NOS NGS-8 Establishment of calibration base lines. Joseph F. Dracup, Charles J. Fronczek, and Raymond W. Tomlinson, August 1977, 22 pp (PB277130). Specifications are given for establishing calibration base lines. - NOS NGS-9 National Geodetic Survey publications on surveying and geodesy 1976. September 1977, 17 pp (PB275181). Compilation lists publications authored by NGS staff in 1976, source availability for out-of-print Coast and Geodetic Survey publications, and subscription information on the Geodetic Control Data Automatic Mailing List. - NOS NGS-10 Use of calibration base lines. Charles J. Fronczek, December 1977, 38 pp (PB279574). Detailed explanation allows the user to evaluate electromagnetic distance measuring instruments. - NOS NGS-11 Applicability of array algebra. Richard A. Snay, February 1978, 22 pp (PB281196). Conditions required for the transformation from matrix equations into computationally more efficient array equations are considered. - NOS NGS-12 The TRAV-10 horizontal network adjustment program. Charles R. Schwarz, April 1978, 52 pp (PB283087). The design, objectives, and specifications of the horizontal control adjustment program are presented. - NOS NGS-13 Application of three-dimensional geodesy to adjustments of horizontal networks. T. Vincenty and B. R. Bowring, June 1978, 7 pp (PB286672). A method is given for adjusting measurements in three-dimensional space without reducing them to any computational surface. - NOS NGS-14 Solvability Analysis of Geodetic Networks Using Logical Geometry. Richard A. Snay, October 1978, 29 pp. No algorithm based solely on logical geometry has been found that can unerringly distinguish between solvable and unsolvable horizontal networks. For leveling networks such an algorithm is well known. #### NOAA Technical Reports, NOS/NGS subseries - NOS 65 NGS I The statistics of residuals and the detection of outliers. Allen J. Pope, May 1976, 133 pp (PB258428). A criterion for rejection of bad geodetic data is derived on the basis of residuals from a simultaneous least-squares adjustment. Subroutine TAURE is included. - NOS 66 NGS 2 Effect of Geoceiver observations upon the classical triangulation network. R. E. Moose and S. W. Henriksen, June 1976, 65 pp (PB260921). The use of Geoceiver observations is investigated as a means of improving triangulation network adjustment results. - NOS 67 NGS 3 Algorithms for computing the geopotential using a simple-layer density model. Foster Mcrrison, March 1977, 41 pp (PB266967). Several algorithms are developed for computing with high accuracy the gravatational attraction of a simple-density layer at arbitrary altitudes. Computer program is included. - NOS 68 NGS 4 Test results of first-order class III leveling. Charles T. Whalen and Emery Balazs, November 1976, 30 pp (GPO# 003-017-00393-i) (PB265421). Specifications for releveling the National vertical control net were tested and the results published. - NOS 70 NGS 5 Selenocentric geodetic reference system. Frederick J. Doyle, Atef A. Elassal, and James R. Lucas, February 1977, 53 pp (PB266046). Reference system was established by simultaneous adjustment of 1,233 metric-camera photographs of the lunar surface from which 2,662 terrain points were positioned. - NOS 71 NGS 6 Application of digital filtering to satellite geodesy. C. C. Goad, May 1977, 73 pp (PB-270192). Variations in the orbit of GEOS-3 were analyzed for M tidal harmonic coefficient values which perturb the orbits of artificial satellites and the Moon. - NOS 72 NGS 7 Systems for the determination of polar motion. Soren W. Henriksen, May 1977, 55 pp (PB274698). Methods for determining polar motion are described and their advantages and disadvantages compared. (Continued on inside back cover)